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Abstract. The study of local fields, especially in finite extensions, exhibits the interplay between residue
fields and ramification theory. This paper delves into the exploration of unramified extensions of local fields,
focusing on their structure and arithmetic properties.
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1. Introduction

1.1. Motivation In the study of local fields, we may observe the ramified and unramified cases. Briefly, in
a field extension L over K where A is a Noetherian integrally closed, having K as a fractional field; B is a
integral closure of A in L, we see that this L/K is unramified when the ramification index e=1. In other
words, the residue field extension is separable, and that the valuation of K extends to L without a change
in the ramification index. This is perhaps the most general and simple case. For instance, let K = Qp and
L = (Qp(ζp)) where ζp is the p-th root of unity, K/L is unramified. However, when the field extension is
ramified, we must have the ramification index e > 1. For example, take K = Qp and L = Qp(p√

p), then the
degree [L : K] = p and e = p > 1; hence, it is ramified. As this is not only complicated but also requires a
sophiscated view, we shall discuss the simpler case, which is unramifed extension at this time.

1.2. Construction The first part of this paper is discussing the basic result of the local fields. Mainly
definition and properties of discrete valuation ring and Dedekind domains. Next, we discuss the extension
and completion in order to give a general perspectives. Then we delve deep in the section of discriminant
and different in ramification and prove the main theorem:

Theorem 1.1. (Main) The extension L/K be unramified at the prime ideal q ⊂ B, then it is necessary and
sufficient that the prime ideal q does not divide the different DB/A.

Prior to beginning, it is fruitful to review the preliminaries(see [CL21]) from (Mostly) Commutative
Algebra by Antoine Chambert-Loir. The rest of sections are from Local Fields by Jean-Pierre Serre(see
[Ser80]).

1.3. Acknowledgement I would like to give a special appreciation to my advior Professor Amadou Bah,
who spent decent amount of time with me for the discussion ovet the summer 2024. This paper, perhaps
the whole contruction, would be impossible to craft without Professor Bah’s instruction.
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2. Preliminaries

Definition 2.1. Ring: R = (R, +, ·) is a ring satisfying properties: (R, +) is an abelian group, (R, ·)is a
monoid, and left and right distributive law holds for any elements in R.
Definition 2.2. Integral Domain: A commutative ring R, that has a unit (1 ̸= 0) with no zero divisors.
Equivalentely, a nonzero ring R is an integral domain ⇔ ∀x, y ∈ R, with x ̸= 0, y ̸= 0, then xy ̸= 0
⇔ ∀x, y ∈ R, if xy = 0, then either x = 0 of y = 0 ⇔ the cancellation law holds for R.
Definition 2.3. Ideals(First founded by Richard Dedekind, 1871) A subset I of R is an ideal if I has
(1):absorbing property for all r ∈ R, s ∈ I we have rs ∈ I(left ideal), sr ∈ I(right ideal). We then write
RI ⊆ I and (2):I is an additive subgroup of (R, +). In fact, it is a normal subgroup, I ◁ R since the coset
multiplication is well-defined in the quotient R/I.

(1) Principal ideal: In a ring R, we have the principal ideal generated by π, denoted (π) = {sπ : s ∈ R}.
(2) Principal ideal domain(PID): Integral domain in which every ideal is principal.
(3) Prime ideal: I ⊂ R is a prime ideal if I ̸= R ,and for every r, s ∈ R, if r, s /∈ I then rs /∈ I.

Equivalentely, if rs ∈ R, then either r ∈ I or s ∈ I.
(4) Maximal ideal: I ∈ R be a maximal ideal if I ≠ R and if J is an ideal such that I ⊆ J , then either

I = J or J = R.
Remark 2.4. Assume that R is a commutative ring, then we know that the ideal p ⊂ R is a prime if and
only if the quotient R/p is an integral domain.
Remark 2.5. R/I is a field if and only if I is a maximal ideal. In fact, a maximal ideal is a prime ideal, but
the converse is not always true. e.g. Take a look at ring of integers R = R with ideal I = (0). Cleary, we
have R/(0) ∼= Z, which is an integral domain, but not a field, hence it is not maximal.
Definition 2.6. Module: Let R be a commutative ring. A right R-module is a set M endowed by scaler
multiplication and internal addition. That is M × R → M defined by (m, r) 7→ mr for any m ∈ M and
r ∈ R. M × M → M denoted by (m, n) 7→ m + n for any m, n ∈ M. Analogously, a letf R-module M also
satisfies internal addition, but the change of order in scalar multiplication, such that R × M → M is now
(r, m) 7→ rm. In fact, R-module M is an abelian group satifying the properites of the commutative ring R.
Also, in the sense of linear algebra, R-module M is a R-linear combination of elements in M, such that

R-module M = r1m1 + · · · + rimi =
i∑

k=1
rkmk ,where rk ∈ R, mk ∈ M

(1) Submodule: From a ring R, we have a R-module M. A R-submodule N is a subset N ⊂ M
satisfying i)N ⊂
M is an abelian and ii)for every r ∈ R and m ∈ M, we have mr ∈ N and rm ∈ N .

(2) Morphisms: Let M and N be two R-modules of a ring R. Then, if we construct a map f : M → N ,
defined by f(ma + nb) = f(m)a + f(n)b for all a, b, ∈ R and for all m, n ∈ M, we call f is a
morphism. The set of all morphisms from M → N , we write HomA(M, N ). In fact, a morphism f
of R-modules to be an isomorphism, it is necessary and sufficient that f is a bijection.

3. Discrete Valuation Rings

3.1. Basic definition and examples. We first define the key concept of discrete valuation ring A, and
that is a principal ideal domain(PID) with unique nonzero prime ideal, denoted m(A). Notice that A/m(A)
is a residue field of A. Since A is a PID, we have (π) be the nonzero prime ideals, generated by irreducible
elements π ∈ A. i.e.A has exactly one irreducible element up to multiplication; we also call π is a uniformizer.
Now, we may see the notion of valuation.
Definition 3.1 (Valuation). As above, we find that nonzero ideals are of the form m(A) = πnA. Let
x ∈ A\{0} be arbitray, then we can say x = πnu, such that π = uniformizer, u = invertible, and n ∈ Z.
Here, the integer n is the valuation, denoted v(x) = n.
Proposition 3.2 (Explicit). Let K be the fractional field of A and K× be the multiplicative group of K.
i.e. K× = { a

b : a.b ∈ K, 0 ̸= b, gcd(a, b) = 1}. Then we have the following properties.



UNRAMIFIED EXTENSIONS IN LOCAL FIELDS 3

(1) The valuation map v : K× → Z is a surjective group homomorphism.
(2) The weak triangle inequality: v(x + y) ≥ Inf(v(x), v(y)) for any x, y ∈ K

Definition 3.3. Satisfying properties (1) and (2), we get a discrete valuation ring A = {v(x) ≥ 0 : x ∈ K}.

Example 3.4. We provide examples for a better understanding of discrete valuation rings: (1)Field of
formal power series, (2)Noraml algebraic variety, (3)Riemann surface. For a simpler case, let us explain that
why a field of formal power series is indeed a discrete valuation ring.

Proof. From a field k, let k((T )) be the field of formal power series in one variable over k. For every non-zero
formal series, an element k((T )) is of the form:

f(T ) =
∑

n≥n0

anT n where an0 ̸= 0

Then, any non-zero element f(T ) ∈ K((T )) can be expressed as f(T ) = T n · g(T ), where n is a smallest
index, such that an0 ̸= 0, and g(T ) ∈ K((T )) is a unit. This means we can view T n to πn with g(T ) be a
corresponding unit. Hence, we have shown that a formal power series is a discrete valuation ring. □

3.2. Characterizations. Recall that Noetherian local ring is a maximal ideal generated by non-nilpotent
element. Then discrete valuation ring is necessary and sufficient to be a Noetherian local ring. In fact, let A
be a Noetherian integral domain, then A is a discrete valuation ring when satisfying the following properties:

(1) A is integrally closed
(2) A has a unique non-zero prime ideal

4. Dedekind Domains

The key point here is to remind the localization of prime ideal p at A, denoted Ap. From a discrete
valuation ring, we expand toward the larger group called Dedekind domain.

Definition 4.1. Localization: Let A be a commutative ring(as always it is unital), we take S be the
multiplicative subest of A. i.e. S is closed under finite producs and 0 /∈ S. Then, the localization with
respect to S is a ring S−1A equipped with a ring homomorphism φ : A → B in which maps S into (S−1A)×,
and satisfying the universal property if ρ : A → B is a ring homomorphism with ρ(S) ⊆ B×. So then, we see
the unique ring homomorphism from S−1A → B. In short, we get the commutative map below:

A B

S−1A

φ

ρ ∃!

We know that a commutative ring containing 1 is an integral domain, so A is an integral domain. Let p be
the prime ideal of A. Then, we have the one-to-one correspondence between the prime ideals of S−1A and
A that do not intersect with S given by the inverse map: q 7→ q ∩ A and p 7→ pS−1A. Now, the ring S−1A
is then denoted Ap with maximal ideal pAp; the field of fractions of A/p as the residue field. Here, we say
Ap is the localization of A at the prime ideal p.

Definition 4.2. Dedekind domain: Noetherian integral domain A satisfying the two properties below is a
Dedekind domain.

(1) For all prime ideals 0 ̸= p ⊂ A, Ap is a discrete valuation ring.
(2) A is integrally closed, and dim(A) ≥ 1.

Example 4.3. Now, we provide properites and examples of Dedekind domains.
(1) In a Dedekind domain, every non-zero fractional ideal is invertible, and this form a group under

multiplication.
(2) If x ∈ A with x is non-zero, then only finitely many prime ideals contain x.
(3) Every fractional ideal a ⊂ A can have a unique factorization of the form: a =

∏
pvp(a) where vp(a)

are integers almost all zero.
(4) Such examples are the following: every PID is Dedekind; the ring of integers of an algebraic number

field is Dedekind; and affine algebraic variety.
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5. Extensions and Completion

In this section, we will introduce separable extensions; significantly, we may observe the unramified and
ramified cases. Then we show the norm and inclusion on ideal groups. This will be a foundation toward our
main theorem of unramified extensions in discriminant and different. The key term here is to understand
the hypothesis below and expand to the completion of discrete valuation ring.

Basic set up: A is Noetherian integrally closed domain, having K as field of fractions and L be the finite
extension of K with the degree [L : K] = n. Now, B be the integral closure of A in L, so that we have
K �B = L, and field of fractions of B is L. From now on, let us denote AKLB in respect to the basic set up.

Hypothesis 5.1. The ring B is finitely generated A-module.

Proof. We show this by using the trace map. Let Tr : L → K be the trace map. By linear algebra, we
know that such a trace map is non-degenerate bilinear form, so then we see that Tr(xy) is a symmetric
non-degenerate K bilinear form on L. If x ∈ B is the conjugated with respect to A, then the conjugates
are integral over A. Hence, we find Tr(x) ∈ A since Tr(x) ∈ K. Next, we consider {ei} be a basis in the
extenstion L/K with {ei} ∈ B. Let V be the free A − module that speend by the basis. Now, for every
sub-A − module − M of L, let the dual set M∗ = {x ∈ L|Tr(xy) ∈ A, ∀y ∈ M}. Then we observe the
inclusion:

V ⊂ B ⊂ B∗ ⊂ V∗

Notice that the dual V∗ is the free module spanned by the basis dual set {ei}. The implies from the Noetherin
hypothesis on A; hence, we have shown that B is finitely generated A − module. □

Having this hypothesis, we find B is a Noetherian integrally closed domain. In fact, since we already know
the definition of Dedekind domain, if A is Dedekind, then we also have B is Dedekind domain.

5.1. Separable extension(basic) We begin this from the fact that the hypothesis 5.1 is satisfied, so that
the finite field extension L over K is seperable. Clearly, we have the AKLB be true. Let q ⊂ B be the
non-zero prime ideal and p = q ∩ A. This implies that the ideal (pB) ⊂ q is generated by p, and this is
equivalent to say q divides p, denoted q|p. Next, let us observe eq as the exponent of q in pB; in fact, this
eq is the ramification index of q in the extension L over K. Then we see the prime decomposition:

(1) eq = vq(pB) where v is the valuation at q and pB = qe1
1 × · · · × qer

r =
∏
q|p

qeq

We also have the residue field extension: B/q over A/p, if q|p. Here, we denote fq = [B/q : A/p] be the
degree of the residue field extension.

Definition 5.2. Totally ramified: If there is only one prime ideal q that divides p, and the residue degree
fq = 1, we say the extenstion L/K is totally ramified at p.

Definition 5.3. Unramified: When eq = 1 and the residue field extenstion B/q over A/p is separable, we
say L/K is unramified at q.

5.2. The Norm Let us denote IA and IB be the ideal groups of A and B, respectively. We define two
homomorphisms in between ideal groups.

i : IA → IB defined by p 7→ pB =
∏
q|p

qeq

and
N : IB → IA defined by q 7→ pfq if q|p

The two homomorphisms are also known as Grothendieck groups, denoted GA. Suppose now GA be the
category of A-modules of finite length. Then, if M ∈ GA and M has a finite length m, we see the composition
series:

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mm = M
Observe that each quotient Mi/Mi−q

∼= A/pi, i.e. isomorphic to simple A-module where pi is a non-zero
prime ideal of A. So, by the Jordan-Hölder theorem, the quotient sequence A/pi depends only on M; hence,
we may put χA(M) =

∏
pi.

Now, we obtain the following propositions by assuming the lineaerity,
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(1) Suppose M is a B-module of finite length, then χA(M) = N(χB(M)).
(2) Equivalentely, suppose M is a A-module of finite length, then χB(MB) = i(χA(M)).
(3) Suppose now that we restrict our case of N to principal ideals coincides with the usual norm map.

If x ∈ L, then N(xB) = NL/K(x)A.

5.3. Completion We introduce the definition of completion in discrete valuation rings. We will apply this
notion in the further case of the discriminant and different. We first keep in mind that K is a field on which
a discrete valuation v is defined, having a valuation ring A. i.e. the given condition is v : K× → Z with
A = {v(x) ≥ 0}.

Definition 5.4. Abolute value: Let a be any real number between 0 and 1, then we put

∥x∥ = av(x) for x ̸= 0, and ∥0∥ = 0

Then we get the formulas:

(1)∥x � y∥ = ∥x∥ � ∥y∥; (2)∥x + y∥ ≤ sup(∥x|, ∥y∥); (3)∥x∥ = 0 if and only if x = 0

Definition 5.5. Completion: Let K̂ be the completion if K for the topology defined by absolute value above.
Note that the topology does not depend on the choice of a. Since K̂ is also a valued field that extends absolute
value of K, we have the form:

∥x∥ = av̂(x) for any x ∈ K̂

Obeserve that the function v̂(x) is integer-valued; consequently, it is a discrete valuation on K̂, whose
valuation ring is the closure Â of A in K̂.

6. Ramification

In this section, we give the background of lattices prior to discriminant and different. The key here is
to recall the result of hypothesis 5.1, which is the bilinear form of the trace map. Next, we will use the
properties of discriminant and different in order to prove our main theorem. Also, we set A be a Dedekind
domain; K as its field of fractions.

Definition 6.1. Lattices: Let V be a finite dimensional vector space over K. Then the lattice of V with
respect to A is a sub-A-module of V, which is finitely generated and spans V. Now, X is a free A-module
of rank [V : K] if A is principal. Then we can reduce the case by localization; A with Ap and X with
ApX = Xp. For example, consider X1 and X2 be two lattices of V, such that X2 ⊂ X1. As we see from the
previous section on the homomorphisms of the norm map, the invariant χ(X1/X2) is non-zero ideal of A.

Definition 6.2. Discriminant: Let W = ΛnV be one-dimensional vector space over K. Then the each lattice
X of V associates with a lattice of W, this is denoted XW = ΛnX. Since W is an exterior algebra of V, we
easily see that the rank [W : K] = 1. Suppose now that our V is provided with a non-degenerate bilinear
form T (x, y). In particular, as T extends to W = ΛnV, we have induced isomorphism: T : W ⊗K W → K
Here, the Image(XW ⊗A XW) under T is a non-zero fractional ideal of K, and this is called the discriminant
of X with resect to T , denoted dX,T . If we retrict the case where X is a free A-module with a basis set
S = {e1, . . . , en}, then the discriminant dX,T is the principal ideal generated by the det(T (ei, ej)).

Remark 6.3. The formula dX,T = det(T (ei, ej)) is the definition of the discriminant in such local case.

We define the different by assuming that AKLB be true. Again, recall from the result of the hypothesis
5.1, the trace map Tr : L → K is a surjective homomorphism; the bilinear form Tr(xy) is non-degenerate
on the a finite field extension L. Here the discriminant of a lattice L is already defined, if this lattice is a
free A-module with basis set {ei}. Explicitly, the discriminant is the ideal generated by the determinant of
the trace map in basis, such that

det(Tr(eiej)) = (det(σ(ei)))2, where σ : {K-monomorphism of L} → {algebraic closure of K}

Clearly, we see that B is a lattice of L, and the corresponding discriminant is denoted dB/A.
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Definition 6.4. Different: Now, we see that B is a lattice of L, and the corresponding discriminant is
denoted dB/A. Next, let B∗ = {y ∈ L|Tr(xy) ∈ A and for all x ∈ B} i.e. This is the dual set of B, so the
dual lattice is denoted B∗

T , and it is called the codifferent of B over A. By taking the inverse of codifferent:
(B∗

T )−1, we obtatin the different D(B/A). As the different D(B/A) is a non-zero fractional ideal of B, we
take the norm to see the following relation:

dX,T = χ(B∗/B) = NL/K(DB/A)

6.1. Properties of discriminant and different

Proposition 6.5. (Transitivity) Suppose that M/L be a separable extension with a finite degree n, and let
C be the integral closure of A in M. Then, we have the following relations:

DC/A = DC/B �DB/A and dC/A = (dB/A)n � NL/K(dC/B)

Proposition 6.6. (Localization) In respect to the localization of Dedekind domain, suppose that S be the
multiplicative subset of A, then we get the equalities:

S−1DB/A = DS−1B/S−1A and S−1dB/A = dS−1B/S−1A

Proof. In localization, we know the formula (S−1b)−1 = S−1b−1; so, we show this formula is also appplicalbe
in the localization of the dual: S−1B∗ = (S−1B)∗. In turn, we first show the inclusion: S−1B∗ ⊂ (S−1B)∗.
Now, let x = s−1y for s ∈ S and y ∈ B∗, then we get the following:

Tr(x) = s−1Tr(y) ∈ S−1A

Notice that S−1B ⊂ S−1B∗ and since this dual localization is also a fractional ideal, we have shown initial
inclusion. Conversely, suppose {bi} be basis set of B as an A-module, and let x ∈ (S−1B)∗. Then, by the
trace map, such that Tr(xbi) = s−1ai where ai ∈ A and sx ∈ B∗, we find Tr(xbi) ∈ S−1A. Hence, we have
shown that (S−1B)∗ ⊂ S−1B∗; thus, we obtain the desired equality. □

Proposition 6.7. (Completion) Let q ⊂ B be a prime ideal and let p = q ∩ A. Suppose that in the
completion B̂q, we have the ideal D̂q generated by the different DB/A. Then, B̂q is the different of the ring
B̂q with respect to the ring Âp.

Proof. Followed by the result of localization in discriminant and different, we consider the case when the
given Dedekind domain A is a discrete valuation ring. Let Â and K̂ be the completion of A and the
fractional field K, respectively. Similarly, let {qi}i∈I be the set of prime ideals of B over p, we denote B̂i be
the completion of B for the valuation defined by qi. By the same analogy, we also have L̂i for L. Then, we
first obeserve the K̂-algebra, such that L ⊗K K̂ = L̂; equivalently, Â-lattice of L̂ is B̂ = B ⊗A Â. Next, as we
have the non-degenerate bilinear form Tr(xy) on L, we take the inverse of the different: (DB/A)−1 = B∗,
and obtain the basis of the dual lattice (B̂)∗. This means, we have (B̂)∗ = B∗ ⊗A Â. On the other hand,
we already know by the extension and completion from the previous section that L ⊗K K̂ =

∏
i∈I L̂i and

B⊗A =
∏

i∈I B̂i. Let Tri be the trace of each extension L̂i/K̂, then we see that the bilinear form

Tr(xy) =
⊕
i∈I

Tri(xy) on L̂i

This implies to (∏
i∈I

Bi

)∗

=
∏
i∈I

(Bi)∗

In which shows that (B̂)∗ =
∏

i∈I(B̂∗
i ). Clearly, since the codifferent of B with respect to A generates each

of the completion L̂i, we take the inverses to get the different, as desired. □

Theorem 6.8. (Unramified Extensions) The given condition is same as the properties of discriminant and
different, and that is let q be a prime ideal of B with p = q ∩ A. In order to have the extension L/K is
unramified at q, it is necessary and sufficient that q does not divide the different DB/A.



UNRAMIFIED EXTENSIONS IN LOCAL FIELDS 7

Proof. The results from the properties of discriminant and different, especially on the localization and com-
pletion, allow us to reduce the case when A is a complete discrete valuation ring. Now, we denote K be
the residue field of A. As we already know the if A is Dedekind domain then B is also Dedekind, we have
B be a discrete valuation ring too. Again, by the previous section, where we introduce the general un-
ramified/totally ramified cases, we must have the ramification index eq = 1, i.e., B/pB is a finite separable
extension of K. Recall from the remark 6.3 of the definition of the discriminant, we view our case in the local
case. So if we have {xi} as a basis of B over A, then its discriminant dB/A is the principal ideal generated
by d = det(Tr(xi, xj)). Then, we must have p does not divide d that the Image(d̄) ∈ k is non-zero. Finally,
let B̄ = B/pB, then we get d̄ be the discriminant of the basis, and the set of images: {Imagexi} form a basis
of B̄ over K. Notice that having d̄ be non-zero means B/pB = B̄ is a seperable K-algebra, and since we are
discusing in the local case, B̄ is obviously a local ring; hence, it is a field. Thus, we have shown that B/pB
is a field with a separable extension of K. □
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